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Abstract 

 
The fundamental principles of experiment design are factorization, replication, 

randomization, and local control of error.  In many industrial experiments, however, departure 

from these principles is commonplace.  Often in our experiments, complete randomization is not 

feasible because factor level settings are hard, impractical, or inconvenient to change, or the 

resources available to execute under homogeneous conditions are limited.  These restrictions in 

randomization result in split-plot experiments.  Also, we are often interested in fitting second-order 

models, which lead to second-order split-plot experiments.   

Although response surface methodology has experienced a phenomenal growth since its 

inception, second-order split-plot design has received only modest attention relative to other topics 

during the same period.  Many graduate textbooks either ignore or only provide a relatively basic 

treatise of this subject.  The peer-reviewed literature on second-order split-plot designs, especially 

with blocking, is scarce, limited in examples, and often provides limited or too general guidelines.  

This deficit of information leaves practitioners ill-prepared to face the many challenges associated 

with these types of designs.  This article seeks to provide an overview of recent literature on 

response surface split-plot designs to help practitioners in dealing with these types of designs. 
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1.  Introduction 

Fisher1 laid down the fundamental principles of experiment design: factorization, 

randomization, replication, and local control of error.  Factorization consists of making deliberate, 

simultaneous changes to the experimental factors to find the individual or mutual effect those 

factors have on the response variables of interest.  Replication is the application of a combination 

of experimental factors, called treatments, to the experimental units to obtain a valid estimate of 

the experimental error.  Randomization refers to the random assignment of treatments to 

experimental units and to the random assignment of experimental runs to treatments.  

Randomization averages out the effects of undesirable factors present in the experiment, generally 

enables the assumption that the experimental errors are independent and identically distributed 

random variables, and produces an unbiased estimate of variance.  Local control of error is an 

experiment design technique that allows for minimizing the influence of nuisance factors on the 

response by partitioning the experimental units into homogeneous subsets called blocks.  Local 

control improves the precision of the comparison of factors of interest and reduces or eliminates 

the component of the variability transmitted from nuisance factors.   

Sometimes it is impractical or impossible to carry out an experiment while adhering 

simultaneously to all the principles of experiment design.  For instance, many industrial 

experiments may involve situations in which the complete randomization of experimental runs 

may not be feasible because of factor level settings that are impractical or inconvenient to change, 

limitations in the resources available to complete the experiment in homogeneous settings, or both.  

There are experiment that involve combinations of materials that are rare-to-find as well as easy-

to-find.  Other experiments involve the application of some treatments to large experimental units 

as well as the application of other treatments to smaller experimental units.  Similarly, some 

experiments require the batch processing of experimental units for some factors but not for other 

factors, or the stream processing of different experimental units requiring the application of the 

same treatment.  Likewise, some experiments involve factors that need to be estimated more 

precisely than other factors, or a combination of factor levels that are hard-to-change as well as 

easy-to-change.  Practitioners generically refer to these situations as experiments with hard-to-

change factors and easy-to-change factors, and to the experiments themselves as split-plot 
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experiments.  Experiments that require fitting higher-order models under restricted randomization 

conditions are referred to as response surface split-plot experiments. 

This article seeks to provide an overview of recent literature related to response surface 

split-plot designs.  It starts with a retrospective quick-look at the seminal work on split-plot 

experiments by Fisher2 and Yates3,4 and on the defining feature of the split-plot designs.  Then the 

article highlights the classical work on response surface methodology by Box and Wilson5 and its 

application to split-plot design.  Reviewed in more detail are key contributions to response surface 

split-plot design by Letsinger, Myers, and Lentner6, Bisgaard7, Goos8, Vining, Kowalski, and 

Montgomery9, Parker, Kowalski, and Vining10,11,12, Jones and Nachtsheim13, Vining14, and Myers, 

Montgomery, and Anderson-Cook15.   

2.  Split-Plot Designs 

Split-plot experiments originated in agronomic research.  In agronomic experiments, some 

factors like irrigation method are restricted to large areas of land, called whole-plots.  Whole-plots 

are split into smaller areas of land, called sub-plots, which allow for the individual application of 

treatments, such as seed variation (some experimenters refer to sub-plots as split-plots).  Factors 

associated with whole-plots are called whole-plot factors while factors associated with sub-plots 

are called sub-plot factors.  Because the whole-plots are split into sub-plots, there is more 

experimental material for the whole-plots than for the sub-plots.  Fisher2 provided the first example 

of “analysis of variation” in experimental field trials to analyze the effect different fertilizers had 

on the yield of potato. 

Like in agronomic experiments, in industrial split-plot experiments the hard-to-change 

factors are associated with the whole-plots while the easy-to-change factors are associated with 

the sub-plots.  There are two different randomizations in split-plot experiments.  First, the 

combination of hard-to-change factors, or whole-plot treatments, are randomly assigned to the 

whole-plots.  Then, within each whole-plot, the combination of easy-to-change factors, or sub-plot 

treatments, are randomly assigned to the sub-plots.  Consequently, a split-plot experiment can be 

thought of as a superposition, or nesting, of two experiments—one experiment based on the whole-

plot treatments and another experiment based on the sub-plot treatments.   
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Blocking is both a technique for controlling error and a form of restricted randomization.  

In the context of local control, blocking improves the precision of the comparison between factors 

by arranging the treatments into groups, or blocks, that have similar sources of variability that are 

extraneous to the experiment.  The differences in variability between the blocks due to irrelevant 

sources are identified and removed analytically leaving in the experimental error only the 

differences within treatments in the same block.  In the context of restricted randomization, the 

whole-plots are analogous to blocks except that there is interest in understanding the variability 

between whole-plots.  There are many variations of the split-plot design such as the split-split-plot 

design, the split-block design, the strip-block design, and the split-block split-block design.  Goos8, 

Vining14, Hinkelmann and Kempthorne16, Federer and King17, Wu and Hamada18, and 

Montgomery19 discussed split-plot design and its variations in detail.  Kowalski, Parker, and 

Vining20 provided a tutorial on industrial split-plot experiments. 

Due to the restriction in randomization, the distinguishing feature of a split-plot designs is 

a model with two error terms, which in matrix form is: 

     (1) 

where y represents the vector of responses, X represents the model matrix that includes both the 

whole-plot and the sub-plot terms,  represents the vector of regression coefficients,  represents 

the vector of whole-plot error terms, ε represents the vector of the sub-plot error terms, and           

~ 0, Σ .  The error terms incorporate measurement error, variability from uncontrolled 

factors, variability in the experimental units to which the treatments are applied to, general 

background noise, etc.  Figure 1 illustrates the error structures of a 23 completely randomized 

design and a 23 split-plot design (with whole-plot factors A and B and sub-plot factor C).   

Bisgaard and de Pinho21 showed that the whole-plot factors and their interactions have a 

larger variance than the sub-plot factors and their interactions.  The variance of the whole-plot 

factors and their interactions has two components—one component coming from the whole-plot 

and another coming from the sub-plot.  The variance of the sub-plot factors and their interactions 

with other factors has only one component, which is coming from the sub-plot.  In general, for k 
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factors and any 2k factorial with N runs, p whole-plot factors, q = k – p sub-plot factors, the variance 

for the whole-plot factors and their interactions is 

 2 2 24
2     q

wp factors N
    (2) 

Similarly, the variance for the sub-plot factors and any interaction with them is: 

2 24  sp factor N
    (3) 

In general, due to the randomization restriction, the estimates involving sub-plot factors 

are more precise.  Split-plot experiments provide less information on the whole-plot factors 

relative to the same factors in similarly sized completely randomized experiments.  However, a 

gain on information on the sub-plots effects and the sub-plot by whole-plot interactions 

compensates for the loss of information on the whole-plot.  The terms  and  

are called variance components, and are components of the total variability in the observations.  

Montgomery19 provided a basic discussion on variance components while Searle, Casella, and 

McCulloch22 provided a more complete discussion.   

Despite of the utility and advantages offered by split-plot experiments, practitioners may 

confront many of the roadblocks that surround experimentation under restricted randomization: 

 the structure of split-plot experiments is significantly more complex than the structure of 

comparable completely randomized designs; 

 sometimes the experiment run matrix is not executed as planned and results in a split-plot 

design, which adds complexity to the analysis; 

 sometimes split-plot experiments are not recognized as such and are inadvertently analyzed 

as if they were carried out as completely randomized experiments, which results in 

inaccurate models; 

 the selection of the correct error term for testing the significance of the factors and their 

interactions is sometimes unclear, especially when the whole-plot and sub-plot factor 

effects are aliased; 
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 some split-plot designs are undesirably large, even for a reasonably small number of 

factors; 

 sometimes the analysis of variance method produces a negative estimate of the interaction 

component, which results in a sub-plot variance component larger than the whole-plot 

variance component; 

 whole-plot replication is necessary for estimating the whole-plot error term, which may 

increase the cost of the split-plot experiment relative to a completely randomized 

experiment; 

 a typical approach for reducing the cost of split-plot experiments is to place more factors 

at the whole-plot level, which reduces the power to detect significant effects. 

Fortunately, the peer reviewed literature addressing the roadblocks mentioned above is 

extensive and dates, as already mentioned, to the cradle of experiment design methodologies.  

Practitioners can find in the literature multiple examples that can help them address those issues. 

Yates3 discussed the confounding of main effects and orthogonality in split-plot 

experiments.  Since each whole-plot contains only one whole-plot treatment, the differences 

between treatments coincides with the difference between whole-plots.  Hence, they are 

confounded.  Thus, there is only trivial information for the comparison between whole-plots while 

the comparison within whole-plots is unaffected by the confounding.  In experiments with 

unreplicated whole-plots, only the error term associated with the sub-plots can be estimated and it 

cannot be used to test for significance of the whole-plot factors.  Thus, the additional error 

components along with valid estimation of each error component are key concepts in split-plot 

experiments.  Yates4 discussed the structure and analysis of split-plot experiments: (1) the random 

assignment of blocks to whole-plots; (2) the random assignment of whole-plots to sub-plots; (3) 

the random assignment of sub-plots to observational units; and (4) the random selection of 

observational units.   

Huang, Chen, and Voelkel23 constructed minimum aberration split-plot fractional factorial 

designs, which minimize the number of main effects aliased with low-order interactions.  Bingham 

and Sitter24 used the minimum aberration criteria to rank some designs created by combining a 

fractional factorial design at the whole-plot level with a fractional factorial design at the sub-plot 
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level while Bingham and Sitter25 provided theoretical results.  Bingham and Sitter26 exemplified 

the effect of restricted randomization on the choice of split-plot design for industrial applications 

while Loeppky and Sitter27 discussed the analysis of those experiments.  Because minimum 

aberration designs have a large number of whole-plots with a small number of sub-plots, they are 

viewed unfavorably for use in industrial applications.   

Addelman28 used split-plot confounding to construct 2k x 2q  factorial and 2k-p x 2q-r 

fractional factorial split-plot experimental plans.  Bisgaard7 provided a comprehensive tutorial on 

fractional factorials in a split-plot structure using the aliasing structure as criteria for selecting a 

design instead of minimum aberration.  Using split-plot confounding to take advantage of using 

different sub-plot designs was a significant contribution and an important step forward for using 

fractional factorials split-plots for industrial applications.   

To reduce the number of experimental runs in split-plot designs, Kulahci and Bisgaard29 

provided split-plot design construction techniques using two-level Plackett-Burman30 designs, 

which are particularly helpful for screening experiments.  Tyssedal and Kulahci31 simplified the 

analysis of designs by Kulahci and Bisgaard29 and showed that their analysis can be done using 

ordinary least squares (OLS) regression.  Tyssedal, Kulahci, and Bisgaard32 constructed two-level 

split-plot designs where the sub-plots were run as mirror image pairs, which separate the sub-plot 

main effects and sub-plot by whole-plot interactions from the rest.  Kulahci and Tyssedal33 

provided a two-level split-plot design construction methodology for multistage experiments using 

the Kronecker product representation of 2k designs, which can be used for any number of stages 

and different number of sub-plots for each stage.   

Hader34, Wooding35, Box36, Simpson, Kowalski, and Landman37, and Vining14 all 

recognized the role of split-plot experiments in industrial experiments and warned us that often 

they are not recognized as such and are incorrectly analyzed as if they were completely randomized 

designs.  Daniel38 referred to this misapplication as an “inadvertent split-plot”.  The consequences 

of an inadvertent split-plot are the mixing of the whole-plot error and the sub-plot error, which 

inflates the variance of the regression coefficients in the model for the sub-plot factors and masks 

the effects of the whole-plot factors, which in turn produces erroneous tests of significance.  Based 

on the specifics of the design, the tests of significance for second-order split-plot designs are tests 
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for purely sub-plot effects, tests for effectively whole-plot effects, and tests for effects somewhere 

in between.   

Equally important as the inadvertent split-plotting issue is the failure to reset the factor 

levels between consecutive runs and then analyze the experiment as if resets did occur.  Ganju and 

Lucas39,40 illustrated how a situation like this produces inappropriate tests of significance.  Ju and 

Lucas41 demonstrated that split-plot blocking can provide superior sub-plot parameter estimates as 

compared to completely randomized designs.  Webb, Lucas, and Borkowski42 compared the 

prediction properties of completely randomized experiments to experiments where the factors 

levels were not reset.  They described how the failure to reset the factor levels in successive runs 

can result in less precision of the parameters estimates and in inflated prediction variances. 

Bisgaard7 coined the term Cartesian product to describe the scalar product technique that 

Taguchi43 used for crossing the inner factors array and the outer factors array in his product array 

experiments.  The technique is like the bi-randomization design construction techniques proposed 

by Letsinger, Myers, and Lentner6 and like the robust product design construction technique 

introduced by Box and Jones44.  Taguchi’s experiments are constructed using a full Cartesian 

product method, which often results in large, unpractical designs.  Also, as pointed out by 

Bisgaard7, the Taguchi’s product array experiments are not widely recognized as split-plot 

experiments and are incorrectly analyzed as if they were completely randomized designs, which 

often results in incorrect models.  Bisgaard and Sutherland45 showed that Taguchi’s famous INA 

Seito tile manufacturing experiment was indeed a split-plot design and reanalyzed it using a 

standard split-plot approach.   

While incorrectly analyzed, the Taguchi INA Seito tile manufacturing experiment 

showcased the utility of design of experiments.  Taguchi identified eight active ingredients in the 

tile clay and only with 16 runs he found a clay formulation that resulted in a more robust product.  

That experiment became one of the industrial experiments that motivated Japan to embrace the 

Taguchi system and propelled the country to become a world-wide leader in product development 

for years to come.  Taguchi’s inner and outer array experiments are highly regarded by the quality 

and manufacturing control community.  Most likely because of their success, they stifled the 

intellectual development of the design and analysis of split-plot experiments.  It was not until the 
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turn of the millennium, coincident with Letsinger, Myers, and Lentner6, Bisgaard7, and Box and 

Jones46, that split-plot experiments began to gain due recognition as a valuable method for 

industrial experiments.   

While the peer reviewed literature is extensive on two-level split-plot designs, the literature 

for response surface split-plot design is scarce, has limited examples, and provides guidelines that 

are often too general.  The next section provides a literature review on response surface designs as 

background to the literature review on response surface split-plot designs that follows. 

3.  Response Surface Designs 

Box and Wilson5 catalyzed the application of response surface methodology to industrial 

experiments.  In many industrial experiments, it is necessary to fit a second-order model to the 

observations to reveal the true underlying process conditions or product characteristics.  In the case 

of a completely randomized design, all factors have the same importance or the same value and 

the second-order Taylor series approximation model used to fit the observations takes the form: 

																	 4  

where y represents the response, xi represents the ith independent variable or factor to which the 

observational units are subjected to, and the ′  represents the regression coefficients that are 

estimated empirically.   

The most popular response surface designs are the central composite design (CCD), by 

Box and Wilson5, and the Box-Behnken design (BBD), by Box and Behnken47.  Another popular 

response surface design is the 3k general factorial design, which is generally inadequate for many 

industrial applications because of its size.   

3.1.  Central Composite Designs 

The central composite design (CCD) is the workhorse of response surface methodology.  

CCDs are five-level designs, which for k factors consist of a combination of 2k factorial or 2  
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fractional factorial designs, center points, and axial points located a distance  from the center of 

the design.  To fit a full second-order model with k factors, central composite designs require 2k + 

2k+ k0 design points (k0 is the number of center points) and can estimate (k + 2)(k + 1)/2 

coefficients.  CCDs have circular (k = 2), spherical (k = 3), or hyper-spherical (k > 3) symmetry.  

The distance α of the axial points from the center of the design—a function of the number of 

factors, their levels, and the desired properties of the design—determines the features and 

properties of the design.  A spherical CCD is a design in which all the factorials and axial points 

are on the surface of a sphere or radius √ .  This means that the prediction variance of the 

design is the same at all points that are at the same distance from the center of the design.  In other 

words, the variance of the predicted response does not change when the design is rotated about the 

center point.  Designs with this property are named rotatable designs.  Rotatability is a property 

that can be used for the selection of a response surface design.  Box and Hunter48 discussed the 

rotatability of second-order response surface designs.  Box and Hunter48 also derived orthogonal 

blocking (block effects do not affect the ability to estimate the model coefficients independently) 

arrangements for several types of designs, including an arrangement to block a CCD in two 

orthogonal blocks.   

3.2.  Box-Behnken Designs 

Box-Behnken designs (BBD) are a family of three-level rotatable or near rotatable designs.  

The construction technique relies on using balanced incomplete block designs and 2k factorial 

designs.  The design avoids the corners of the design space in favor of edge points located at the 

mid-level (xi = 0) of the factor levels, which results in poor estimation at the factorial point 

locations.  Thus, BBDs are more useful for situations in which there is no interest in predicting at 

the factorial points of the cube.  Like for CCDs, replicated runs at the center points permit a more 

uniform estimation of the prediction variance over the design space.  Although practitioners often 

associate the BBD with cuboidal regions because of its cubic appearance, the BBD is a spherical 

design.  Because these designs are rotatable or near-rotatable, they require sufficient center points 

to improve their prediction accuracy.   

3.3.  Small or Saturated Response Surface Designs 
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There are situations in which scarce resources—funds, time, material, manpower, or 

equipment—makes it impractical to allow the use of standard designs for fitting second-order 

models, especially when the number of factors k is high.  For those situations, small or specialized 

response surface designs could be attractive.  Some of the most popular small or saturated response 

surface designs were proposed by Hartley49, Westlake50, Rechtschaffner51, Doehlert52, Hoke53, 

Pesotchinsky54, Lucas55, Box and Draper56, Roquemore57, Mitchell and Bayne58, Notz59, Draper60, 

Morris61, Oehlert and Whitcomb62, and Gilmour63.   

3.4.  Optimal Designs 

Keifer64,65 and Keifer and Wolfwitz66 laid the foundation for evaluating and comparing 

designs based on optimal design theory—designs that are “best” with respect to some criterion.  

Optimal designs are a good option whenever it is inadequate to use classical designs.   

3.5.  Definitive Screening Designs 

Jones and Nachtsheim67 proposed a class of three-level screening designs when the number 

of factors is k > 5.  Definitive screening designs (DSD) provide estimates of the main effects that 

are uncorrelated with two-factor interactions and pure quadratic terms.  Because they are three-

level designs, the quadratic effects are estimable.  DSDs require 2k + 1 runs.  Two-factor 

interactions are only partially confounded with other two-factor interactions as opposed to 

Resolution IV screening designs in which two-factor interactions are completely confounded with 

other two-factor interactions.  Pure quadratic effects are not completely confounded with 

interactions. 

Jones and Nachtsheim67 also provided an algorithm to calculate the pairwise correlation 

coefficient between two model terms.  Jones and Nachtsheim68 expanded the application of DSD 

to any number of two-level categorical factors.  Jones and Nachtsheim69 developed flexible 

orthogonal blocking DSD strategies for situations involving only quantitative factors and for 

situations involving a mix of quantitative and two-level qualitative factors.  For both fixed and 

random blocks, the numbers of blocks may vary from two to k and the block sizes do not need to 

be equal.  Jones70 examined the goodness of DSDs.  
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Errore et al.71,72 showed that DSD can break down when there are several active second-

order terms.  Jones and Nachtsheim73 showed that tailoring the model selection to the structure of 

a DSD, orthogonality of main effects and orthogonality between main effects and second-order 

effects, can lead to a better model-selection. 

4. Response Surface Split-Plot Designs 

In a split-plot experiments, the assumption that all factors have the same importance or the 

same value does not hold, and the second-order Taylor series approximation takes the form:  

2 2
0

1 2 1 1 2 1 1 1

( )        
         

             
p p p p q q q p q q

i i ji j i ii i i i ji j i ji j i ii i
i j i i i i j i i j i i

E y z z z z x x x z x x      (5) 

where  represents the ith sub-plot factor,  represents the ith whole-plot factor, k = p + q,  

represents the regression coefficients for the whole-plot linear terms,  represents the regression 

coefficients for the whole-plot pure quadratic terms,  represent the regression coefficients for the 

sub-plot linear terms and whole-plot by sub-plot interaction terms, and  represent the regression 

coefficients for the sub-plot quadratic terms.   

Myers74 provided a review of, and outlined the status of, response surface methodology.  

Anderson-Cook et al.75 covered response surface design evaluation.  Neff and Myers76 reviewed 

the impact of recent developments in response surface methodology on applications in industry.  

Myers et al.77 reviewed the developments in response surface methodology from 1989 through 

2004, including split-plot experiments, and synthesized the state-of-the-art and areas for research 

in robust parameter design, response surface designs, multiple responses, generalized linear 

models, and other topics.  The paper presented a brief historical perspective, identified three 

extensive reviews conducted over the last 50 years, and provided an extensive bibliography.  Khuri 

and Mukhopadhyay78 surveyed the development of response surface methodology and provided 

research directions.  Khuri79 reviewed the application of response surface methodology to the 

agricultural and food sciences. 

4.1.  Restricted Central Composite Designs 
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Lucas and Ju80 studied completely randomized, completely restricted (two equally sized 

replicates), and partially restricted (four equally sized replicates) run orders using a CCD with 

three whole-plot factors and one sub-plot factor.  The runs were equally divided into two blocks.  

They found that for restricted randomization, the residual standard deviation was much smaller 

and all regression coefficients except the linear and quadratic coefficients for the whole-plot 

factors have much smaller standard deviations.   

Myers, Montgomery, and Anderson-Cook15 provided an example of a restricted CCD with 

two whole-plot factors and two sub-plot factors.  Parker, Kowalski, and Vining11 provided a 

catalog of balanced and unbalanced CCDs.  Wang, Vining, and Kowalski81 studied the rotatability 

of CCDs in a split-plot structure and proposed a two-strata rotatable split-plot CDD where the 

prediction variance is a function of the distance to the whole-plot center and the distance to the 

sub-plot center separately.   

English, Simpson, Landman, and Parker82 characterized the flight performance of a small-

scale unmanned aerial vehicle developed for commercial and military operations using a minimum 

whole-plot CCD provided by Parker, Kowalski, and Vining12.  The experiment involved one hard-

to-change factor (wing tip height) and two easy-to-change factors (angle-of-attack and yaw angle).   

4.2.  Restricted Box-Behnken Designs 

Myers, Montgomery, and Anderson-Cook15 provided an example of a restricted BBD with 

two whole-plot factors and two sub-plot factors.  Parker, Kowalski, and Vining11 provided a 

catalog of balanced and unbalanced BBDs. 

4.3.  2k + Center Runs, 3k, 4k, and Subset Designs 

There are situations where it is impractical to fit a second-order model with a classical 

design because it requires an impractical high number of treatments, it has a complex alias 

structure, or it cannot accommodate constraints associated with block structures, block sizes, or a 

reduced number of runs.  Designs that overcome those disadvantages are needed.   



14 

Simpson, Kowalski, and Landman37 studied the effects that four factors—front ride height, 

rear ride height, yaw angle, and grille configuration—had on the aerodynamic performance of a 

NASCAR Winston Cup Chevrolet Monte Carlo stock car in a wind tunnel.  The levels for the front 

ride height and rear ride height factors were hard-to-change while the levels for the yaw angle and 

grille configuration factors were easy-to-change.  The layout consisted of one two-level, replicated 

whole-plot at each of the four factorial points ( ,  = ( 1, 1  augmented with one whole-plot 

at the whole-plot center ( ,  = (0, 0).  The sub-plot structure was similar and consisted of one 

sub-plot run at each of the four factorial points ( ,  = ( 1, 1  and one whole-plot at the 

whole-plot center ( ,  = (0, 0).  The center points allowed for testing and isolating curvature 

at both the whole-plot and sub-plot level.  Replication provided degrees-of-freedom for estimating 

both the whole-plot variance and the sub-plot variance.  The model contained terms for all linear 

effects, for all two-factor interactions, for the confounded sub-plot quadratic terms , 

and for the confounded whole-plot quadratic terms .  Although the type of situation 

presented by the authors was a departure from traditional experiment design, it is commonplace in 

industrial experiments and emphasized the importance of adapting traditional response surface 

methods to fit specific needs while preserving the desirable properties of response surface designs. 

Another approach to construct split-plot designs is stratum-by-stratum.  In multi-stratum 

experiments, sets of experimental units must have the same treatment for at least one factor (like 

a split-plot design).  This strategy can produce designs with more than one strata (i.e. split-split-

plot designs) and can be used to fit second-order or higher response surface models.  This strategy 

produces whole-plots that are not balanced and designs that are less efficient than D-optimal 

designs.  Cheng83 provides a procedure for constructing multi-stratum designs and discusses the 

properties of those designs. 

Gilmour and Trinca84 provided practical advice on the regression analysis of blocked 

response surface designs, including an alternative approach to calculate the estimates for variance 

components as well as the recommendation to use REML for estimating the regression 

coefficients.  Trinca and Gilmour85 used a second-order split-plot design to maximize the yield 

and purities of two proteins in a protein-extraction process.  They considered one hard-to-change 

factor (feed position) and four easy-to-change factors (feed flow rate, gas flow rate, and the 

concentration of two proteins). 
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Gilmour63 provided four-level response surface designs based on irregular two-level 

fractional factorials.  Gilmour86 introduced a class off three-level response surface design called 

subset designs, which are constructed by using 2k designs in subsets while holding the other factors 

at the center.  Mylona, Macharia, and Goos87 introduced two new families of three level GLS-OLS 

equivalent-estimation (more on that later) split-plot designs—one based on the three-level subset 

designs introduced by Gilmour86 and the other based on supplementary difference set designs.  

Goos and Gilmour88 discussed a general strategy for construction multi-stratum and split-plot 

designs.  Gilmour and Trinca89 discussed statistical inference for blocked designs.  Trinca and 

Gilmour90 provided an algorithm to improve the efficiency of multi-stratum designs while Trinca 

and Gilmour91 applied the optimality criteria to obtain multi-stratum designs and showed that these 

designs have better properties for inference than a comparable optimal design. 

4.4.  Fractional Factorial Designs 

To construct orthogonal fractional factorial split-plot designs with two or more levels, 

Sartono, Goos, and Schoen92 used an approach involving integer linear programming and mixed 

linear programing for small design problems.  Similarly, they used integer linear programming and 

variable neighborhood search for large design problems.   

4.5.  Optimal Designs 

Goos and Vandenbroek93 developed an algorithm for constructing D-optimal split-plot 

designs.  Goos8 addressed additional aspects of optimal designs in a blocked and split-plot structure 

while Goos and Vandenbroek94 constructed D-optimal split-plot designs with specific numbers of 

whole-plots.   

Jones and Nachtsheim13 provided a comprehensive review of split-plot designs and 

proposed a D-optimal split-plot design algorithm that trades replicates at the center points of the 

whole-plot and sub-plots for sub-plot runs that are at the corners of the design region.   

Myers, Montgomery, and Anderson-Cook15 provided an I-Optimal design for an 

experiment involving two hard-to-change factors (cure temperature and percent of resin in the 

adhesive) and two easy-to-change factors (amount of adhesive and cure time) that affect the 
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strength of an adhesive used in a medical application.  Jones and Goos95 showed that both the 

prediction capability and the estimation of factor effects of I-Optimal response surface split-plot 

designs is substantially better than D-Optimal response surface split-plot designs.   

4.6.  Small or Saturated Response Surface Split-Plot Designs 

Parker, Kowalski, and Vining12 provided a catalog of Box and Draper56, Hoke53 near 

saturated, Notz59 saturated, and hybrid minimum whole-plot designs.   

4.7.  Definitive Screening Designs 

Lin and Yang96 studied the performance of DSDs adapted to split-plot experiments for one-

step response surface methodology.  They showed that split-plot DSDs perform well in situations 

where there are a small number of significant factors. 

4.8.  OLS-GLS Equivalent Estimation Designs 

Recall that the simplest split-plot model is given by .  Letting  and  

represent the sub-plot and whole plot error variances, and assuming that 0, ) and        

0,  are independent, the variance–covariance matrix of   is , where 

J is a block diagonal matrix of 1bi x 1′bi x 1, I is a block diagonal identity matrix, and bi is the 

number of sub-plots within the ith whole-plot.  Vining, Kowalski, and Montgomery9 established 

the OLS and GLS estimates of  and the variance-covariance matrices for each of the estimates:  

′      (6) 

′     (7) 

′     (8) 

    (9) 

The OLS estimates is not the best linear unbiased estimator of .  The GLS estimate is the 

best linear unbiased estimator if and only if  and  are known and if there is no OLS-GLS 
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equivalence.  The estimates are equal if and only if a nonsingular matrix F exists such that 

.  When the OLS and GLS coefficient estimates are equal, the variance-covariance matrix for 

both coefficient estimates is equal.   

Vining, Kowalski, and Montgomery9 derived the necessary conditions to achieve OLS-

GLS equivalent estimates for the regression coefficients and proposed two strategies conducive to 

achieving this condition.  One strategy is to arrange each whole-plot with identical sub-plot 

designs, which typically result in large designs.  The other strategy is to use a second-order 

orthogonal design with an identical number of sub-plot runs, which requires augmenting the design 

with center runs.  Vining, Kowalski, and Montgomery9 constructed OLS-GLS equivalent split-

plot CCDs and BBDs, recommended options for obtaining balanced designs, and focused on 

estimating pure-error.   

Bisgaard and Steinberg97 and Bisgaard7 used the equivalence between OLS-GLS for their 

first-order and first-order with interactions models.  Bisgaard7 achieved OLS-GLS equivalence in 

partial confounding designs even though not all sub-plots had the same experiment design.  

Conversely, Draper and John98 and Trinca and Gilmour85 recommended REML as alternative on 

how to estimate the variance components.  REML is applicable to every possible split-plot design 

and provides good approximations for a good range of variance components; however, the 

variance component estimates depend on the specified model. 

Second-order OLS-GLS equivalent estimation split-plot designs have received significant 

attention since 2005 since they have good features.  Their construction is independent of a priori 

knowledge of the variance components.  They can be analyzed using GLS algorithms, which are 

available in most commercial software packages.  They are easy to generate.  They provide pure-

error estimates of the variance components that are independent of the model, which can be used 

for lack-of-fit tests, but that require an increased number of runs to make possible the estimation.  

Pure-error estimates are important in the early stages of experimentation.  However, many 

practitioners object to replicating the center points under the precept that center points contribute 

very little towards building a model.  Exact tests can be derived for at least some of the coefficients.   
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Parker, Kowalski, and Vining10 provided a catalog of non-crossed OLS-GLS designs for 

equivalent estimation.  Parker, Kowalski, and Vining11 proposed methods for constructing 

balanced OLS-GLS equivalent estimation minimum whole-plot designs based on traditional 

response surface designs.  The minimum whole-plot method is intended to reduce the number of 

whole-plots to the minimum number required to fit a second-order model by redistributing the runs 

that Vining, Kowalski, and Montgomery9 allocated to overall center points to the whole-plot 

factorial points.  Parker, Kowalski, and Vining11 also provided a catalog of balanced and 

unbalanced CCDs and BBDs.  Vining and Kowalski99 established the appropriate error terms for 

testing pure sub-plot effects and effective whole-plot effects.  Sub-plot residuals are though as 

individual data values predicted by the sub-plot model and adjusted by the whole-plot mean.  

Vining14 wrapped it all together. 

The designs by Vining, Kowalski, and Montgomery9 have the most exact tests relative to 

minimum whole-plot designs and have unrestricted axial values for both whole factors () and 

sub-plot factors () axial points.  They preserve the OLS-GLS equivalence with model reduction 

and in designs with whole-plots that only have center runs, but do not perform well relative to the 

D-optimality criteria due to the overabundance of runs at the center of the whole-plots.  For 

minimum whole-plot designs, the OLS-GLS equivalence depends on  and , and it is not 

preserved with model reduction or for designs that have whole-plots in which all runs are center 

runs.   

Goos100 provided an overview of blocked and split-plot designs and compared optimal 

designs and OLG-GLS equivalent estimation designs via estimation-based and prediction-based 

criteria.  Goos100 illustrated orthogonally blocked D-optimal designs and D-optimal split-plot 

designs for equivalent estimation.  Macharia and Goos101 provided D-Optimal and D-efficient 

equivalent estimation second-order split-plot designs.  Jones and Goos102 provided an algorithm 

for finding D-efficient equivalent estimation second-order split-plot designs that outperformed 

those of Macharia and Goos101 and for cases in which the Macharia and Goos101 algorithm couldn’t 

find equivalent-estimation designs.  Nguyen and Pham103 described an algorithm that produced D-

efficient equivalent estimation split-plot designs by interchanging the sub-plot factor levels within 

each whole-plot.  They evaluated the design using the cases reported by Macharia and Goos101 and 

Jones and Goos102.  
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Yuan103 constructed balanced and unbalanced OLS-GLS equivalent-estimation second-

order split-split-plot CCDs.  Aggarwal et. al.104 constructed balanced and unbalanced split-plot 

CCDs and split-plot BBDs involving two quantitative sub-plot factors and one qualitative whole-

plot factor based on the designs by Parker10,11,12. 

4.9.  Blocked Split-Plot Designs 

Sometimes, practitioners cannot complete an experiment under homogenous settings, and 

the variability associated with those settings permeates through the response variables and inflates 

the experimental error.  This could be a problem since a precise comparison between and within 

treatments to detect the effects of the factors of interest requires homogeneous experimental 

units—a key concept introduced by Fisher106.  Blocking is a form of local control of error.  In a 

blocked design, the variability of the experimental units is less than the variability of the 

experimental units before they were grouped into blocks.  A blocked design is complete if each 

block contains all of the treatments.  Similarly, a blocked design is balanced if each block, which 

represents a level of the block factor, has an equal number of experimental units.  Box and Hunter48 

and Khuri107 exposed the conditions for orthogonal blocking in second-order designs.  Khuri107 

generalized those conditions.  Khuri108 studied response surface models with fixed and random 

block effects and established that blocking increases the prediction variance.  However, if the 

design blocks orthogonally, the blocks do not influence the estimation of the model coefficients 

and the least squares estimators of the regression variables are the same as without blocking.  While 

some recent work by Tsai109 has addressed blocking in first-order split-plot designs, only Wang, 

Kowalski, and Vining110, Jensen and Kowalski111, and Verma et.al.112 incorporated blocking into 

second-order split-plot designs. 

Wang, Kowalski, and Vining110 constructed OLS-GLS equivalent central composite 

blocked split-plot designs and OLS-GLS equivalent Box-Behnken blocked split-plot designs from 

the second-order equivalent estimation designs proposed by Vining, Kowalski, and Montgomery9 

as well as from the minimum whole-plot designs proposed by Parker, Kowalski, and Vining12.  

While the designs by Wang, Kowalski, and Vining110 have many appealing features and properties, 

the interaction between whole-plot factors is confounded with the block effect in cases when there 
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are only two whole-plot factors.  Wang, Kowalski, and Vining110 extended the second-order 

orthogonal blocking conditions to second-order split-plot designs. 

Jensen and Kowalski111 used a restricted CCD to fit a second-order model in a split-plot 

experiment involving two whole-plot factors and one sub-plot factor in the presence of blocking 

at sub-plot level.  The design satisfied the conditions for OLS-GLS equivalent estimation.  The 

experiment presented unique challenges for estimating the error terms and for checking the model 

assumptions.  The parameters estimates were obtained using GLS although they could have been 

obtained using the simpler OLS estimation.   

Verma et.al.112 constructed balanced second-order blocked split-plot designs using designs 

by Dey113 and unbalanced second-order blocked split-plot designs using designs by Zhang et. 

al.114.  Dey113 provided 3k designs considering second-order orthogonal blocking.  Zhang et. al. 114 

provided small BBDs, but did not consider second-order orthogonal blocking.  Verma et. al.112 

used a block size of two.  The second-order split-plot designs derived from Dey113 satisfied the 

second-order orthogonal blocking conditions, but the second-order split-plot designs derived from 

Zhang et. al.114 did not.  The algorithm to construct a second-order orthogonally blocked designs 

consisted of allocating sub-plots to whole-plots and whole-plots to blocks, sorting on certain 

factors, replicating whole-plots to achieve block balance, and then adding center runs to the whole-

plots to obtain a second-order design that blocks orthogonally. 

Baniani, Nargesi, Moghadam, and Wulff115 examined the corrosion of medium carbon steel 

in an experiment with three factors in a split-block split-plot arrangement.  In addition to showing 

the test of significance for this arrangement, the study made recommendations for fitting a second-

order model. 

Goos and Gilmour88 showed how to carry out lack-of-fit tests for blocked, split-plot, or 

multi-stratum experiments and generalized the approach suggested by Vining, Kowalski, and 

Montgomery9 and the tests proposed by Khuri107 by exploiting replicates other than center point 

replicates.  Arnouts and Goos116 discussed the analysis of an experiment that involved the adhesion 

between steel tire cords and rubber, an ordinal response,  and a random effect block factor in a 

split-plot structure. 
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4.10.  Crossed and Cartesian Product Designs 

Response surface split-plot designs began to receive significant attention for use in 

industrial experiments at the turn of the last century.  Letsinger, Myers, and Lentner6 investigated 

the effect that two hard-to-change factors (temperature 1 and pressure 1) and three easy to-change 

factors (humidity, temperature 2, and pressure 2) had on a (proprietary) response variable.  A 

second-order model was expected to explain the relationships between the factors and the 

response.  Letsinger, Myers, and Lentner6 constructed both crossed response surface bi-

randomization designs (BRD), which contain identical sub-plots in each whole-plot, and non-

crossed response surface BRD, which may contain a different number of sub-plots in each whole-

plot, and estimated the model regression coefficients using ordinary least squares (OLS), 

generalized least squares (GLS), iterated reweighted least squares (IRLS), and restricted maximum 

likelihood (REML).  REML outperformed the other estimation techniques and OLS was 

appropriate only when the whole-plots were balanced.  Letsinger, Myers, and Lentner6 proved that 

OLS and GLS are equivalent if the sub-plot had the same experiment designs, but did not prove 

the equivalence with other conditions. 

Vining14 explained that for the cases reviewed by Letsinger, Myers, and Lentner6, REML 

outperformed the other estimation techniques because the response surface designs were 

unbalanced.  Because the designs were unbalanced, the OLS and GLS estimates were not 

equivalent; consequently, all the techniques for estimating the model coefficients are better 

estimators than OLS.  Particularly, GLS is best-unbiased linear estimator if the whole-plot and 

sub-plot variances are known.   

Cortes et. al.117 provided an approach for constructing a response surface split-plot design 

referred to as response surface Cartesian product split-plot design.  This type of design is 

constructed by crossing specific arrangements of whole-plot factors and sub-plot factors derived 

from CCDs, Box-Behnken designs, and definitive screening designs to generate response surface 

split-plot designs that are consistent with the traditional philosophy of response surface 

methodology.  Response surface Cartesian product split-plot designs are economical, have a low 

prediction variance of the regression coefficients, and have low aliasing between model terms.  In 

some cases, they can overcome some of the difficulties presented by other types of designs.  Based 
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on an assessment using well accepted design evaluation criterion, response surface Cartesian 

product split-plot designs perform as well as historical designs that have been considered standards 

up to this point. 

5. Response Surface Design Evaluation Criteria 

The selection of an appropriate experiment design is often affected by factors such as the 

objective of the experiment, the homogeneity of the experimental units, the resources available to 

carry out the experiment, the complexity of the model to be fitted, and the capability to estimate 

internal error.  Practitioners can select the most appropriate design by comparing different options 

over a wide range of characteristics.   

5.1.  General Design Evaluation Criteria 

Box and Wilson5 identified some characteristics of good response surface designs.  Box 

and Hunter48, Box and Draper118, Box119, and Box and Draper120 further refined and expanded 

those characteristics, which include: 

 distribute the information throughout the experimental region; 

 provide a good fit of the model to the data; 

 detect lack-of-fit; 

 allow transformations; 

 permit the experiment to be carried out in blocks; 

 allow for the sequential assembly of higher-order designs; 

 provide an estimation of internal error; 

 be robust to outliers and the gross violation of normal theory assumptions; 

 require a small number of experimental runs; 

 provide data patterns that allow visual appreciation; 

 ensure simple calculations; 

 be robust to errors in control of factor levels; 

 require a practical number of factor levels; 

 check the homogeneous variance assumption; 
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Clearly, there are trade-offs in selecting a response surface design with good 

characteristics.  Often, the experimental situation dictates the relative importance of those 

characteristics.  While it is uncommon to find a design that simultaneously has all the 

characteristics listed above, a good design does not need to have them all.  Most of the sources 

coincide in that a desirable property of response surface designs is a low and reasonably stable 

prediction variance over the design space (the scaled prediction variance measures the precision 

of the estimated response over the design space).  The estimates are a function of the design, the 

model, and the location of the prediction in the design space.  Park et.al.121 discussed the prediction 

variance properties of second-order designs for cuboidal regions.   

Box and Hunter48 noted that criteria based only on the variances of the model terms was 

insufficient for the selection of a response surface design.  Box and Draper120 made clear the 

inherent danger of relying on only a single criterion and recommend choosing a design that 

balances many characteristics.  Myers et. al.77 pointed out that the importance of design robustness 

is underscored by forcing the use of a single criterion.  Box and Draper122 and Anderson-Cook, 

Borror, and Montgomery75 are also useful references on the desired characteristics of response 

surface designs.   

Myers, Montgomery, and Anderson-Cook15 adapted the general guidelines to response 

surface split-plot designs.  Like for response surface designs, a good response surface split-plot 

design should balance some of the following characteristics: 

 provide a good fit of the model to the data; 

 allow a precise estimation of the model coefficients; 

 provide a good prediction over the experimental region 

 provide an estimation of both whole-plot variance and sub-plot variance; 

 detect lack-of-fit; 

 check the homogeneous variance assumption at the whole-plot and sub-plot levels; 

 consider the cost in setting the whole-plot and sub-plot factors; 

 ensure the simplicity of the design; 

 ensure simple calculations; 

 be robust to errors in control of factor levels; 

 be robust to outliers. 
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Lu, Anderson-Cook, and Robinson123 used a multi-criteria pareto frontier approach to 

optimize the selection of a response surface design.  Liang, Anderson-Cook, and Robinson124 

adapted the fraction of design space plots proposed by Zahran, Anderson-Cook, and Myers125 to 

split-plot designs: 

′    (10) 

5.2.  Optimality Criteria 

Optimality criterion provides a measure of how good a design is relative to a given 

objective function for a model.  The criterion can be classified as information-based, distance-

based, or compound.  While those designs are optimal according to a single criterion for a specified 

statistical model, they could be sub-optimal according to another criterion.  The designs are model 

dependent and may require a model that the user may not have.  The efficiency of these designs 

depends on the number of factors, the number of points, and the maximum standard error for 

prediction over the design space.  Typically, the best design for an application is the design with 

the highest optimality efficiency.  The designs have designations corresponding to letters of the 

alphabet, such as D-, G-, I-, A-, V-, and E-optimality, to name a few.  The most popular are the D-

, G-, and I-optimal designs.  D-optimal designs are good for screening while G- and I-optimal 

designs are good for characterization and optimization based on the variance properties.  Many 

practitioners, undoubtedly, will eventually use some form of computer-generated optimal split-

plot design where they would have the option to select the optimality criterion required by the 

objective of the experiment. 

D-criterion attempts to minimize the variance of the regression coefficients | |.  G-

criterion attempts to minimize the maximum scaled prediction variance over the design region R.  

I-criterion (also called Q- or IV-criterion) attempts to minimize the average scaled prediction 

variance by dividing v(x) by the volume of R.  The criteria for both a completely randomized 

design and a split-plot design are illustrated in Figure 2 where X1 and X2 represent the X matrices 

for each design, p represents the number of model parameters, and ( )Q  represents the scaled 

prediction variance averaged over the design region.  
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High D-efficiency is an indication of a good estimation of the model coefficients in terms 

of generalized variance.  High G-efficiency is an indication of good prediction capability in terms 

of minimizing the maximum scaled prediction variance in the region of interest.  High I-efficiency 

is an indication of good prediction capability in terms of the minimum average scaled prediction 

variance in the region of interest. 

5.3.  Cost 

The cost of executing a completely randomized design is usually proportional to the overall 

number of runs because, typically, the cost of every treatment is essentially the same.  This 

assumption does not hold in a split-plot experiment because often a split-plot experiment involves 

some factors that are costlier-to-change than others.  Factors that are costlier-to-change are 

typically assigned to the whole-plot; thus, the cost driver for the experiment is the number of 

whole-plots.  Because replication is needed to obtain an estimate of the whole-plot variance, 

practitioners tend to correlate this increase in overall sample size with an increase in cost.  

Therefore, it makes sense to judge the cost of a split-plot design by both the number of whole-

plots and the number of runs within a whole-plot rather than by the number of total runs alone.   

Bisgaard7 used cost as part of a multiple criteria to compare the value of the information 

from the split-plot design against the cost of its runs.  Parker, Anderson-Cook, Robinson, and 

Liang126 demonstrated an approach that incorporates a cost function for evaluating the 

performance of competing second-order split-plot designs, and argued that the number of whole-

plots is as important or more than the total number of runs.  Additionally, the cost of blocking a 

split-plot experiment needs to factor in the blocking structure, the number of whole-plots, and the 

types of whole-plots. 

6. Summary 

Fisher1 embedded the principles of replication, randomization, and local control of error in 

the fabric of experiment design and introduced the split-plot experiment for agronomic research.  

Box and Wilson5 pioneered the application of design of experiments to industrial experiments and 

jump-started the development of response surface methodology.  While response surface 
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methodology has experienced a significant growth since Box and Wilson5, the growth of the design 

and analysis of second-order split-plot experiments, with and without blocking, has not received 

as much research attention.  There is a vast body of literature related to response surface 

methodology, blocking, restricted randomization, design evaluation criteria, and first-order split-

plot designs; however, literature on response surface split-plot design, particularly with blocking, 

is limited to only a few papers.   

This literature research validates the need for improving industrial response surface split-

plot design alternatives, without and with blocking.  There is a need for improved approaches for 

constructing response surface split-plot designs (with and without blocking), especially for 

scenarios where replication must be minimized at the whole-plot level.  Similarly, there is a need 

to refine the guidance and criteria for selecting better response surface split-plot designs.  We 

encourage continued research in these areas.  
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